Chlorpromazine Analogs

(0.133 g, 10 mmoles). The soln was allowed to stand 12 hr and then poured into Et₂O. The solid was collected and washed with Et₂O (230 mg, mp 188-193°), recrystd from *n*-PrOH, mp 213-215° (80 mg); uv (abs EtOH) max 214, 284, min 263 m μ .

(Procedure D) 2,4-Diamino-5-(1-adamantyl)-6-methylpyrimidine ESA Salt (15b). DAMP (15a) (320 mg, 1.23 mmoles) was dissolved in abs EtOH (110 ml), $C_2H_5SO_3H$ (0.137 g, 1.24 mmoles) was added to this soln, the reaction mixt stirred at room temp for 0.5 hr, and the vol reduced to about 20 ml under vacuum, poured into Et₂O, and refrigerated for 4 hr. After collection and washing with Et₂O, the solid product (360 mg) was recrystd, PrOH (28 ml).

References

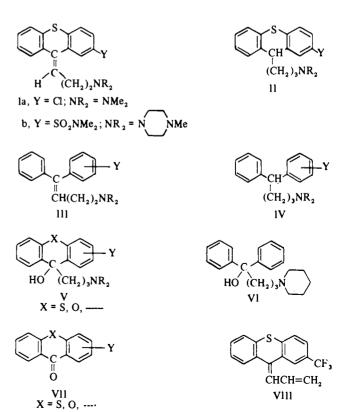
(1) J. P. Jonak, S. F. Zakrzewski, and L. H. Mead, *Pharmacologist*, 13, 211 (1971).

- (2) J. Jonak, S. Zakrzewski, and L. Mead, J. Med. Chem., 14, 408 (1971).
- (3) Y. K. Ho and S. F. Zakrzewski, Proc. Amer. Ass. Cancer Res., 12, 44 (1971).
- (4) (a) B. R. Baker, B. T. Ho, and D. V. Santi, J. Pharm. Sci., 54, 1415 (1965); (b) B. R. Baker and B. T. Ho, J. Heterocycl. Chem., 2, 335 (1965); (c) B. R. Baker and B. T. Ho, J. Pharm. Sci., 55, 470 (1965).
- (5) G. Nemethy and H. A. Scheraga, J. Chem. Phys., 36, 3382 (1962).
- (6) M. Muraoka, A. Takada, and T. Ueda, Keio J. Med., 11, 95 (1962).
- (7) E. A. Falco, et al. Brit. J. Pharmacol., 6, 185 (1951).
- (8) J. P. Jonak, S. F. Zakrzewski, L. H. Mead, and M. T. Hakala, J. Med. Chem., 13, 1170 (1970).

Analogs of Phenothiazines. 4. Effect of Structure upon Neuropharmacological Activity of Some Chlorpromazine Analogs of the Diphenylmethane Type

Carl Kaiser,* Alex M. Pavloff, Eleanor Garvey, Philip J. Fowler, David H. Tedeschi, Charles L. Zirkle, Research and Development Division, Smith Kline and French Laboratories, Philadelphia, Pennsylvania 19101

Edward A. Nodiff, and Andrew J. Saggiomo


Germantown Laboratories, Affiliated with the Franklin Institute, Philadelphia, Pennsylvania 19144. Received December 13, 1971

The synthesis of a series of chlorpromazine analogs of the diphenylmethane type, *i.e.*, aminoalkyl and aminoalkylidene derivatives of diphenylmethane, xanthene, thioxanthene, and dibenzocycloheptane, is described. These compounds, prepared as analogs of the tricyclic psychotropic agents, were investigated in several pharmacological tests for psychotropic activity. One of the geometric isomers (presumably, the cis isomer) of N,N-dimethyl-2-trifluoromethylthioxanthen- $\Delta^{9,\gamma}$ -propylamine (25) and the related xanthene 38 were more potent than chlorpromazine in several animal tests in which many neuroleptic agents are active. Aminoalkyl derivatives 58 and 65, the side-chain-reduced congeners of these olefins, were nearly equipotent with chlorpromazine in various pharmacological tests for neuroleptic activity. Some of the intermediate carbinols (V), congeners of the antiemetic agent, diphenidol, were examined for their ability to inhibit apomorphine-induced emesis in dogs. Two of these compounds, p-Cl (14) and p-CF₃ (19) congeners of diphenidol, were more potent than the parent. Structure-activity relationships of these series of compounds are discussed.

Of the many tricyclic analogs of the antipsychotic (neuroleptic) phenothiazines studied since the discovery of chlorpromazine ¹⁻⁴ the thioxanthene derivative chlorprothixene (Ia) was the first reported to have potent chlorpromazinelike activity.⁵ Research in several laboratories has produced other thioxanthenes of type I which are clinically effective neuroleptic agents. Two drugs of this class, Ia and thiothixene (Ib),^{6,7} are currently marketed in the United States.

Although structure-activity studies suggest that the pharmacological activity of thioxanthenes and phenothiazines generally varies with structure in a similar way, the published data,^{5,8-11} many of which have been obtained only in mice by procedures which do not reliably predict neuroleptic potency,^{12,13} are difficult to interpret. Less information is available on the activity of the saturated thioxanthenes II which apparently have not been studied as much as the type I compounds. It was concluded from an early study of a few saturated derivatives in our laboratories and elsewhere⁸ that they were considerably less potent than the unsaturated thioxanthenes. Even scantier data on the pharmacological activity of xanthene,^{14,15} dibenzocycloheptene,^{16·18} dihydroanthracene analogs of I and II, and of the "ringopened" analogs, the diphenylmethane^{14,19,20} derivatives, III and IV, have been published.

As part of an extensive study of structure-activity relationships in the phenothiazine series²¹ we have investigated many diphenylamine and diphenylmethane derivatives, in-

							$\frac{3}{2}$ Y				
						CH ₂ CF	IR'CH ₂ NR ₂			Pharmacol	
No.	х	Y	R'	NR ₂	Salt	Mp, °C	Recrystn solvent	Yield, %	Formula ^a	Antiapomorphine ac Dose, mg/kg (po)	tivity, dogs ^D Response, %
10	S	2-CF ₃	Н	NMe ₂		118-119	EtOH-H ₂ O	95	C ₁₉ H ₂₀ F ₃ NOS	d	•
2	S	2-CF ₃	н	NNMe		158-159	Et 2O	92	C22H25F3N2OS		
3 4	0 0	2-CF ₃ 2-CF ₃	Me H	NMe ₂ NMe ₂		e 132-133	EtOH-H₂O	93 93	C ₂₀ H ₂₂ F ₃ NO ₂ ^f C ₁₉ H ₂₀ F ₃ NO ₂ ^f	g 2(5)	25 (63) ^h
5	0	2-CF ₃	Н	NNMe		130-131	MeOH-H ₂ O	78	$C_{22}H_{25}F_{3}N_{2}O_{2}$	i	
6	0	2-CF ₃	Н	N		144-146 ^j	EtOH-H ₂ O	75	$C_{21}H_{25}NO_{2}f$	k	
7		Н	Н	NNMe		145-146	Et ₂ O	94	C ₂₁ H ₂₈ N ₂ O	25	56
8		Н	Me	NMe ₂	Maleate	139-140	EtOH-Et ₂ O	98	$C_{23}H_{29}NO_{5}f$		
9		Н	Ме	N	Maleate	154-155	MeOH-Et ₂ O	86	$C_{26}H_{33}NO_5^{f}$	3.7	17.4
10		н	Н	N N(CH ₂) ₂ OCH ₂ Ph		89-90	Hexane	54	$\mathrm{C_{29}H_{36}N_2O_2}$		
11		2-C1	Н	NNMe	Dimaleate	198 dec	MeOH	91	C ₂₉ H ₃₅ ClN ₂ O ₉	15.2	5.6 ¹
12		3-Cl	Н	NMe	Dimaleate	204 dec	МеОН	98	C29H35CIN2O9	15.2	44.4 ¹
13		2-Cl	Н	N	Citrate	181 dec	МеОН	98	$C_{27}H_{34}CINO_8^{f}$	ED ₅₀ ca. 2.8	
14		-3-Cl	Н	N	Maleate	128-129	EtOH-Et ₂ O	73	C25H30CINO5	ED _{so} ca. 0.9 (0.4-1.9)	
15		2-CF ₃	Н	NMe	Dimaleate	196-197	EtOH-H ₂ O	7 9	C ₃₀ H ₃₅ F ₃ N ₂ O ₉	l	
16		3-CF ₃	Н	NMe	Dimaleate	204 dec	МеОН	76	C30H35F3N2O9 ^m	9.3	39.7 ⁿ
17		1-CF ₃	Н	N	Maleate	133-135	EtOH-Et ₂ O	66	C ₂₆ H ₃₀ F ₃ NO ₅ ^f	11.5	8.1
18		2-CF ₃	Н	N	Maleate	138-140	Me ₂ CO-Et ₂ O	90	C ₂₆ H ₃₀ F ₃ NO ₅	3.8 (11.5)	23.8 (66.1)
19		3-CF ₃	Н	N	Maleate	128-129	Me ₂ CO-Et ₂ O	88	C ₂₆ H ₃₀ F ₃ NO	ED ₅₀ 0.8 (0.6-1.2) ⁰	
Dipher	nidol (VI)									ED ₅₀ 1.5 (0.4-2.9) ^p	

^aAll compds were analyzed for C, H, N and analytical values were within $\pm 0.4\%$ of talcd values unless otherwise noted. ^bSee Exptl Section. ^cRef 47, 48. ^dIn the mouse rage test 25 mg/kg inhibited induced fighting behavior in 14.2\% of the pairs. ^eBp 142-145° (0.2 mm). ^fAnalyzed for C, H. ^gIn rats, 200 mg/kg produced no overt response. ^hIn the conditioned avoidance response test 75 mg/kg produced specific blockade in 62% of the rats. ⁱIn the mouse rage test 25 mg/kg did not produce a response. ^jBp 173-176° (0.2 mm). ^kIn the mouse rage test 25 mg/kg inhibited fighting behavior in 43% of the pairs. ^lIn rats 182 mg/kg produced no overt response. ^mH: calcd, 5.65; found, 6.33. ⁿIn rats 188 mg/kg produced no overt response. ^oIn the rat dose range test 230 mg/kg produced decreased motor activity, ptosis, and low body posture. In the conditioned avoidance response test 230 mg/kg produced specific blockade in 50% of the rats. ^pRef 22.

Table 11. Aminopropylidene Derivatives of Thioxanthenes, Xanthenes, and Diphenylmethanes

						X Z	Y			
					Ť	CHCHR'CH	2NR2			
No.	x	Y		NR ₂	Salt	Mp, °C	Recrystn solvent	Methoda	Yield, %	Formula ^b
20 ^{<i>c</i>}	S	Н	Н	NMe ₂						
2 1 ^{<i>c</i>}	S	Н	Н	NNMe						
22	S	Н	Н	N	Citrate	105-108 ^d	EtOH-Et ₂ O	A-B	55	C ₂₆ H ₂₉ NO ₇ S ^e
2 3 2 4 ^{c,f}	S S	H 2-Cl	н н	NHMe NMe,	HC1	223-224	EtOH-Et ₂ O	I	70	$C_{17}H_{18}CINS^e$
258	S	2-CF 3	Н	NMe ₂	HCI	199-200	EtOH-Et ₂ O	C_{h}^{h}	30	C ₁₉ H ₁₉ ClF ₃ NS
26 ⁱ 27 ^j	S S	2-CF ₃ 2-CF ₃	H H	NMe ₂	HC1	212-213 169-171	EtOH-Et ₂ O	C^h	32	$C_{19}H_{19}CIF_{3}NS$
28 ¹	S	2-CF ₃	н	NHMe NHMe	HCI HCI	177-178	Me ₂ CO-Et ₂ O Me ₂ CO-Et ₂ O	I I	73 68	C ₁₈ H ₁₇ CIF ₃ NS ^{e, k} C ₁₈ H ₁₇ CIF ₃ NS
2 9	S	2-CF ₃	Н	NNMe	2HCI ^m	243 dec	Me ₂ CO-Et ₂ O	B, D	93, 52	$C_{22}H_{25}Cl_2F_3N_2S$
30 ^{n, o}	S	2-CF ₃	H	N	HCl	251-252	EtOH-Et ₂ O	D^h	36	C ₂₂ H ₂₃ ClF ₃ NS
31 <i>p,q</i>	S	2-CF ₃	Н	N	Cyclohexyl- sulfamate	155-157	Me ₂ CO-Et ₂ O	D ^h	35	$C_{28}H_{35}F_{3}N_{2}O_{3}S$
3 2 ^r	S	2-CF ₃	H	м	HCI	219-221	EtOH-Et ₂ O	D	33	$C_{21}H_{21}CIF_3NS$
3 3s	S	2-CF ₃	Н	N_N(CH₂)₂OH	2HCl	227-230	MeOH-Et ₂ O	D	36	$C_{23}H_{27}Cl_2F_3N_2OS$
34	0	Н	Н	N	HCI	182-184	EtOH-Et ₂ O	A-B	70	$C_{20}H_{22}CINO^{e}$
35 ⁿ 36 ^p	0 0	2-Cl 2-Cl	H H	NMe ₂ NMe ₂	Maleate Maleate	175-177 156-158	i-PrOH i∙PrOH	C ^h C ^h	27 22	C ₂₂ H ₂₂ CINO ₅ C ₂₂ H ₂₂ CINO ₅
37	0	2-C1	Н	NNMe	2HCl	246 dec	EtOH-Et ₂ O	A-B	74	$\mathrm{C_{21}H_{25}Cl_{3}N_{2}O^{t}}$
38 ⁿ	0	2-CF ₃	Н	NMe ₂	HCI	191-192	Me ₂ CO	C^h	28	C ₁₉ H ₁₉ CIF ₃ NO ^e
39 ^p 40 ⁿ	0 0	2-CF ₃ 2-CF ₃	H Me	NMe ₂ NMe ₂	HC1 HC1	192-193 215-216	Me2CO MeCN-Et2O	C ^h C ^h	40 32	$C_{19}H_{19}CIF_{3}NO^{e}$ $C_{20}H_{21}CIF_{3}NO^{e}$
41 ^p	ŏ	2-CF ₃	Me	NMe ₂	HC1	203-204	MeCN-Et ₂ O	C^h	28	$C_{20}H_{21}CIF_3NO^e$
42 ⁿ	0	2-CF ₃	Н	NMe	2HCl	241 dec	EtOH	C^h	30	$\mathrm{C_{22}H_{25}Cl_2F_3N_2O^k}$
43	0	2-CF ₃	Н	N N(CH ₂) ₂ OCH ₂ Ph	2HCl	219-222	EtOH-Et ₂ O	Α, C	80, 85	$\mathrm{C_{23}H_{27}Cl_2F_3N_2O_2}^{e}$
44		Н	Η	N N(CH ₂) ₂ OCH ₂ Ph	2HCl ^u	259-262	<i>i</i> ·PrOH-Et ₂ O	В	79	$C_{21}H_{28}Cl_2N_2^{\nu}$
45		Н	Н	ŃN(CH₂)₂OH	2HCl	240-241	EtOH	В	59	$C_{22}H_{30}Cl_2N_2O^k$
46		Н	Me	NMe ₂	HC1	178-179	EtOH-Et ₂ O	В	78	C ₁₉ H ₂₄ ClN ^e
47		Н	Me	N	HCI	184-185	EtOH-Et ₂ O	В	72	C ₂₂ H ₂₈ CIN
48		2-Cl	H	NMe	2HCl ^w	216-218	EtOH-Et ₂ O	В	72	$C_{21}H_{27}CI_{3}N_{2}^{t}$
49 ⁿ		3-Cl	H	NMe	2HCl ^x	250 dec	EtOH	В	53	$C_{21}H_{27}CI_{3}N_{2}^{t}$
50 ^{p, y}		3-C1	H	N NMe	2HCl	213-215	EtOH-Et ₂ O	В	40	$C_{21}H_{27}CI_{3}N_{2}^{t}$
51		2-CF₃	H	NNMe	2HCl	215-217 ^z	EtOH-Et ₂ O	В	53	$C_{22}H_{27}Cl_2F_3N_2$
52		3-CF ₃	Η	NNMe	Dimaleate	198 dec ^{aa}	МеОН	В	72	$C_{30}H_{33}F_{3}N_{2}O_{8}$

^aSee Exptl Section, General Procedures. ^bFootnote a in Table I. ^cRef 9. ^dBase, bp 230° (2.5 mm). ^eAnalyzed for C, H, ^fTrans isomer. ^gIsomer A. Ref 9 reports mp 199-200° for trans isomer. ^hSee Exptl Section for sepn of isomers. ⁱIsomer B. Ref 9 reports mp 218-220° for cis isomer. ⁱIsomer A. Prepd from **25**. ^kAnal. calcd for 0.5 mole of H₂O. ¹Isomer B. Prepd from **26**. ^mA dipicrate was crystd from Me₂CO-EtOH; mp 247° dec. Anal. ($C_{34}H_{29}F_{3}N_8O_{14}S$) C, H, N. ⁿIsomer A. ^oGlpc of the base using a 2% GF-1 on Gas Chrom Z Column at 195° gave a single peak with a shorter retention time than that of base isolated from 31. ^pIsomer B. ^qGlpc of base using same conditions as in footnote o gave a single peak of longer retention time than that of 30. ^rGlpc of the base using conditions described in footnote o gave a single peak, 15-min retention time. The mixture from which **32** was isolated under similar glpc conditions gave two peaks of retention times 14.7 min (54.6%) and 15.0 min (42.5%). ^sRef 9 reports mp 235-237° for this compd or its isomer. ^tAnal. calcd for 1 mole of H₂O. ^u A dipicrate was crystd from Me₂CO, mp 251° dec. Anal. ($C_{33}H_{31}ClN_5O_7$) C, H, N. ^vC, calcd, 66.98; found, 66.30. ^wOnly one isomer was isolated. A dipicrate was crystd from Me₂CO, mp 249° dec. Anal. ($C_{33}H_{31}ClN_5O_7$) C, H, N. ^vThis isomer was isolated from the mother liquors from isolation of 49. A dipicrate was crystd from Me₂CO-EtOH, mp 244.5° dec. Anal. ($C_{33}H_{31}ClN_5O_7$) C, H, N. ^vZhase, bp 184-188° (0.5 mm). ^{aa}Base, bp 160-163° (0.2 mm).

Table 111. Aminoalkyl Derivatives of	f Diphenylmethanes and Relate	ed Compounds
--------------------------------------	-------------------------------	--------------

						R'	↔ Y CH₂CHR"CH₂N	IR ₂			
No.	X	Y	R'	R''	NR ₂	Salt	Mp, °C	Recrystn solvent	Method ^a	Yield, %	Formula ^b
53 ^c 54 55 56 ^c	S S S	H H H Cl	H H Me H	H H H H	NMe ₂ NHMe NMe ₂ NMe ₂	HCI HCI	192-193 183-184	EtOH-Et ₂ O EtOH-Et ₂ O	F H	93 67	C ₁₇ H ₂₀ CINS ^d C ₁₉ H ₂₄ CINS ^e
50 57 58	S S	MeS CF ₃	H H	H H	NMe ₂ NMe ₂ NMe ₂	Maleate	f 143-145	EtOH-Et ₂ O	G G, F ^g	72 52, 76	C ₁₉ H ₂₃ NS ₂ ^d C ₂₃ H ₂₄ F ₃ NO ₄ S ^d
5 9	S	CF ₃	Н	Н	NNMe	2HCl ^h	271 dec	EtOH	G, F	79,66	$C_{22}H_{27}CI_2F_3N_2S^d$
60 61 62 ^j	S S O	CF 3 CF 3 H	H Me H	H H H	NHMe NMe2 NMe2	HCI HCI ⁱ	161-163 164-168	EtOH-Et ₂ O EtOH-Et ₂ O	I H	64 19	C ₁₈ H ₁₉ ClF ₃ NS C ₂₀ H ₂₃ ClF ₃ NS
63	0	Н	Н	Н	N	HCl	143-144 ^k	EtOH-Et ₂ O	G	53	$C_{20}H_{24}CINO^d$
64 65	0 0	Cl CF,	H H	H H	NMe ₂ NMe ₂	Citrate HCl	96-97 ¹ 154-155	EtOH-Et ₂ O EtOAc	G E	53 57	$\begin{array}{c} C_{24}H_{28}CINO_4^{d}\\ C_{19}H_{21}CIF_3NO \end{array}$
66	0	CF3	Н	Н	NNMe	2HCl	225 dec	EtOH-Et ₂ O	Ε	83	$C_{22}H_{27}Cl_2F_3NO^{d,m}$
67	0	CF3	Н	Н	N N(CH ₂) ₂ OAc	Dimaleate	189-191 dec	МеОН	п	67	$C_{33}H_{37}F_{3}N_{2}O_{11}$
6 8	0	CF3	н	Н	N(CH ₂) ₂ OH	2HCl	154-155	EtOAc	E	57	C ₁₉ H ₂₁ CIF ₃ NO
6 9	0	CF3	Н	Н	NHMe	HC1	136-137	EtOAc-Et ₂ O	I	72	$C_{18}H_{19}CIF_{3}NO^{d,O}$
70		Н	Н	Н	NNMe	2HCl	271-272	<i>i</i> -PrOH-Et ₂ O	Ε	59	$C_{21}H_{30}Cl_2N_2^{O}$
71		Н	Н	Me	NMe ₂	HCl	189-190	EtOH-Et ₂ O	Ε	89	$C_{19}H_{26}CIN^d$
7 2		Н	H	Ме	N	HC1	154-155	EtOH-Et ₂ O	E	87	$C_{23}H_{30}CIN^d$
73		CF3	н	н	NNMe	Dimaleate	193-194	EtOH-Et ₂ O	Е	88	$C_{30}H_{35}F_{3}N_{2}O_{8}d$
74 7 5	$\begin{array}{c} \text{CMe}_2\\ (\text{CH}_2)_2 \end{array}$	H H	H Me	H H	NMe ₂ NMe ₂	HCI HCI <i>q</i>	196-198 191-193	EtOH-Et ₂ O EtOH-Et ₂ O	E ^p H	83 12	$\begin{array}{c} C_{21}H_{28}CIN^d\\ C_{21}H_{28}CIN \end{array}$

 $\sim x \sim$

^aSee Exptl Section, General Procedures. ^bFootnote *a*, Table I. ^cRef 9. ^dAnalyzed for C, H. ^eC: calcd, 68.35; found, 67.75. ^fBp 185-187° (0.5 mm). ^gAlso prepd in 85% yield by hydrogenation of mixture of isomers **25** and **26** in EtOH in presence of Raney Ni at 25°. ^hDimaleate, mp 204° dec, from MeOH. *Anal.* ($C_{30}H_{33}F_2N_2O_4S$) C, H. ⁱNmr peak (CDCl₃) at δ 1.9 ppm (s, 3 H, CCH₃). Base, bp 155-158° (0.5 mm). ^jRef 14. ^kBase, bp 170-175° (0.2 mm). ^bBase, bp 158-160° (0.3 mm). ^mC: calcd, 57.02; found, 56.48. ⁿSee Exptl Section. ^oAnal. calcd for 0.5 mole H₂O. ^pPrepd from N,N,9,9-tetramethyl-9,10-dihydroanthracen- $\Delta^{9,\gamma}$ -propylamine.⁵⁵ ^qNmr peak (CDCl₃) at δ 2.0 ppm (s, 3 H, CCH₃).

cluding types I-IV, as well as several xanthenes, a dihydroanthracene (74), and a dibenzocycloheptane (75). In this paper we present the results of our pharmacological evaluation of some compounds of these four types. Included are data on some diphenylcarbinols V, the precursors of I-IV, which are analogs of diphenidol (VI), a potent antiemetic agent which lacks most of the pharmacological properties of the antipsychotic drugs.²² The synthesis and characterization of some compounds not previously reported or not adequately described in the literature are also presented.

Synthesis. The diphenylcarbinol derivatives V (1-19, Table I) were prepared by addition of an aminoalkylmagnesium chloride²³ in THF to a benzophenone, thioxanthone, or xanthone (VII). Dehydration of diphenylcarbinols (V) to olefins (20-28, 34-52, Table II) was accomplished with HCl or Ac₂O. Several thioxanthen- $\Delta^{9,\gamma}$ -propylamines (29-33, Table II) were obtained by addition of amines²⁴ to the methiodide²⁵ derived from either *cis*- or *trans*-I (Y = CF₃; NR₂ = NMe₂)²⁶ or to 9-(2-propenylidene)-2-trifluoromethylthioxanthene (VIII) which likewise was obtained from either methiodide²⁵ *via* the Hofmann elimination reaction. By all of these routes olefins were obtained as mixtures of trans and cis isomers. Several mixtures were separated, but the stereochemistry of the isomers was not established. One of the isomeric xanthenes (42) was isolated; however, attempts to isolate the other isomer were complicated by the rapid equilibration of the cis and trans forms, probably *via* an oxonium salt,¹⁴ in the presence of mineral acid. Some propylamine derivatives (Table III) were prepared by catalytic hydrogenation or P-HI reduction of the corresponding olefinic compound; others (Table III) were obtained by alkylation of the appropriate diphenylmethane with an aminoalkyl halide in PhMe or DMSO.

Secondary N-methylated amines (23, 27, 28, 60, 69) were prepared from corresponding dimethylamines by hydrolysis of intermediate substituted cyanamides obtained by the von Braun cyanamide reaction.²⁷

Syntheses of various intermediates, a 5-oxide (76) prepared from 26, and a succinamide derivative (77) obtained from 60 are also described in the Experimental Section.

Pharmacology. Results and Discussion. The pharmacological data on some unsaturated (type I) and saturated (type II) thioxanthenes and their xanthene analogs are collected in Tables IV and V. From a study of a large number of thioxanthenes, including some of those in Tables IV and V, administered ip to mice, Møller Nielsen and coworkers⁹ concluded that potent central depressant activity in this series depends on ring substitution at C-2, presence

ge, mouse	Depression of spontaneous motor activity, mouse	Antiapomor p hine, dog
20.6 = 14%		
		ED ₅₀ 23.4
<i>i</i> . 4.3	3.4 (1.9-5.3)	2.8 (1.4-13.8)
	DD_{50} ca. 110	
1.3 (0.9-1.8)	1.1 (0.5-2.7)	0.19 (0.07-0.41)
22.7 = 28%		13.6 = 65%

22.2 = 4%

9.1 = 93%

2.2 (1.4-3.3)

22.8 = 18%

 $ED_{50} < 1.7$

DD₅₀ ca. 78.2

DD₅₀ ca. 0.9

DD₅₀ ca. 15.6

5.8 (4.3-7.9)

1.2 (0.9-1.6)

Table IV. Pharmacological Activity of	Thioxanthene	- and Xanthene-∆ ^s	γ, γ -propylamines ^a
---------------------------------------	--------------	-------------------------------	---

Conditioned avoidance, rat

123.0 = 40%

44.8 = 33%

90.6 = 55%

222 = 50%

22.8 = 0%

11.2 (4.8-25.6)

9.1 (6.0-13.6)

11.9 (6.6-21.4)

1.0 (0.7-2.2)

1.0 (0.8-1.3)

28.2 (19.1-41.6)

ED₅₀ ca. 115.0

ED₅₀ ca. 5.1

Dose range,^b

rat

++

++

+

++

......

++

++

No.

20

21

22

Chlorprothixene

24

25

26

34

35

36

38

39

Chlorpromazine

Trifluoperazine

Perphenazine

Promazine

^aSee Exptl Section for description of pharmacol tests. Unless indicated otherwise, results are given as ED_{s0} 's with 95% fiducial limits in parentheses or as response (%) at the indicated dose and are expressed as base (mg/kg, po). ^bSee Exptl Section, characteristic hind limb spread and catalepsy at 5-50 mg/kg, ++; at 100-200 mg/kg, +; and at a dose greater than 200 mg/kg, -.

Ptosis production, rat

22.2 = 0%

25 = 0%

ED₅₀ ca. 25.5

20.6 = 28%

6.7 (4.6-9.5)

5.8 (4.1-7.0)

10.3 (8.0-13.5)

91 (57.5-144.0)

0.79 (0.39-1.6)

22.7 = 13%

Rage, mouse

ED₅₀ ca. 4.3

3.2 (2.2-4.5)

10.8 (7.3-15.8)

1.8 (0.9-3.8)

2.5(1.7-3.8)

18 (12.7-25.6)

22.8 = 0%

Table V. Pharmacological Activity of 9-(Aminopropyl)thioxanthenes and -xanthenes⁴

No.	Dose range, ^b rat	Conditioned avoidance, rat	Ptosis production, rat	Rage, mouse	Depression of spontaneous motor activity, mouse	Antiapomorphine, dog
53		310.1 = 30%			DD ₅₀ ca. 124.1	ED ₅₀ ca. 23.0
56			31.9 = 13%	19.9 = 29%		30
57	+	50 = 44%		25 = 29%		
58	++	ED ₅₀ ca. 10.9	10.3 (7.4-14.7)	13.2 (7.5-23.1)	DD ₅₀ ca. 8.3	3.7 = 78%
5 9		5 = 67%	7.8 (5.1-12.0)	17.8 (10.1-31.2)	30	5 = 100%
		10 = 70%	. ,			
6 2		303.5 = 30%			DD ₅₀ ca. 86.7	21.7 (sc) = 76%
63	_	355.6 = 50%				22.2 = 0%
64	_	ED ₅₀ ca. 183.3			$DD_{50} ca. 55.0$	15.3 = 46 %
65	++	ED ₅₀ ca. 8.1	10.7 (9.4-12.2)	11.5 (8.4-15.9)	12.0 (5.9-30.8)	ED ₅₀ ca. 3.5
56	++	ED ₅₀ ca. 24.4	21.1 = 25%	21.1 = 29%		50
58		5.5 (4.6-6.6)	6.6 (4.8-9.2)	12.8 = 28% 17.0 = 72%		

^aFootnote a, Table IV. ^bFootnote b, Table IV.

of a double bond between C-9 and the side chain, and a cis configuration⁺ at the double bond. However, the data of these authors are difficult to interpret because the relative potencies of standard phenothiazine neuroleptics determined by their procedures do not correlate with the relative potencies of these agents in the clinic or in producing neuroleptic-like pharmacological effects in animals, *i.e.*, in tests such as blockade of conditioned avoidance response, ptosis, catalepsy, and amphetamine antagonism.^{12,13} For example, these workers⁹ report that promazine, chlorpromazine, and trifluoperazine are approximately equipotent in reducing spontaneous motor activity of mice, whereas it is well established in the clinic and in certain animal tests that trifluoperazine is at least 10 times more potent than chlorpromazine which in turn is more potent than promazine.

According to the data of $M \phi$ ller Nielsen, *et al.*,⁹ the unsaturated thioxanthene derivative without a substituent in the 2 position (20) is about as potent as its phenothiazine analog, promazine, and more potent than the corresponding saturated thioxanthene (53), and its 2-chloro derivative (56), an analog of chlorpromazine. In dose-range studies and the conditioned avoidance test in rats we find the unsaturated derivative, 20, and its two congeners, 21 and 22, as well as the saturated derivative 53 (Table V), are much less potent than promazine.

Ring substitution of unsaturated (type I) compounds leads to geometrical isomerism. As noted previously⁹ and from data in Table IV, in all instances one of the isomers, presumably cis^{6,9,†} (chlorprothixene vs. 24, 25 vs. 26, 35 vs. 36, and 38 vs. 39), is considerably more potent than the other. Introduction of Cl in the 2 position leads, in the case of the cis isomer of the unsaturated thioxanthene (chlorprothixene), to marked enhancement of potency but appears to have little effect on activity of the saturated derivative (56). In the saturated thioxanthene series, a 2-MeS derivative (57) is somewhat more effective than its Cl counterpart (56). Introduction of the 2-CF₃ group greatly enhances potency of not only the unsaturated thioxanthene (25) but of the saturated congener (58) as well. Similar chlorpromazine-like potency is evidenced by 59, an analog of 58 in which the NMe_2 group is replaced by N-methylpiperazino moiety. The unsaturated trifluoromethylthioxanthene with an N-methylpiperazino group (29) was ineffective in the mouse rage test at 25 mg/kg, and at 100 mg/kg it produced only a 20% response in the rat ptosis test; however, the isomer composition was not established. The isomeric purity of the corresponding hydroxyethylpiperazino derivative (33) also was not determined; however, it produced significant neuroleptic-like activity at 10 mg/kg. A recent report suggests that in the 2-Me₂NSO₂ thioxanthenes with a piperazino group in the side-chain-unsaturated derivatives (Ib) and the corresponding saturated compounds are about equipotent.⁶ Thus, whether an unsaturated thioxanthene will be much more potent than its corresponding saturated analog appears to depend on other structural features in the molecule.

Evidently the 9-H in saturated thioxanthenes cannot be replaced with a larger group without loss of neurolepticlike properties. The 9-Me derivatives (55 and 61, Table III) did not produce neuroleptic-like effects in rats at 182 mg/kg.

In our tests the 2-unsubstituted xanthene derivatives (34, 62, 63), like the corresponding thioxanthene analogs,

show very weak, if any, neuroleptic-like activity. Also in analogy with the thioxanthenes, substitution with Cl in the 2 position of the xanthenes does not result in potent activity in the saturated (64) series; however, in the unsaturated series, one of the isomers (35), but not the other (36), produces chlorpromazine-like effects in the rat dose-range test. Similarly, substitution with CF_3 in the xanthene series produces potent activity in both unsaturated (38) and saturated (65) derivatives.

It is noteworthy that in the saturated 2-trifluoromethylxanthene series replacement of Me_2N (65)²⁹ with N-methylpiperazino (66) decreases neuroleptic-like activity whereas this structural change in the phenothiazine, and perhaps also in thioxanthene, derivatives appears to consistently increase potency. Replacement of the N-Me group of the piperazine moiety with the $HO(CH_2)_2$ group enhances potency, but the resulting compound (68) is not significantly more potent than the Me₂N derivative (65). Whether similar structural effects are observed in unsaturated xanthenes has not been determined. Initial attempts to isolate the more active geometric isomer of the CF3-substituted N-methylpiperazine derivative (42), which was ineffective in the rat ptosis and mouse rage tests at 20.7 mg/kg, were not successful due to the facile isomerization that occurs in compounds of this type.¹⁴ A 2-Cl derivative (37) produced no significant neuroleptic-like activity and only 30% blockage of the conditioned avoidance response at 80 mg/kg in rats; however, again the stereochemistry of this compound was not established.

Secondary N-methylated amines of types I and II in all instances were less potent than their Me_2N parents. In mice the unsaturated thioxanthene 23, at 44 mg/kg, caused only decreased motor activity. The 2-CF₃-substituted analog 27 (presumably cis), derived from 25, produced only 57% response in the mouse rage test at 4.3 mg/kg and twice this dose was required to produce chlorpromazine-like activity in the same species. Isomeric (presumably trans) 28 did not produce neuroleptic-like activity in mice at 90 mg/kg. The saturated thioxanthene 54 produced only decreased motor activity and distended testes at 88 mg/kg in mice. The 2-CF₃ analog 60 was about 0.1 as potent as 58, its tertiary amine precursor, in the test for depression of motor activity in mice (DD₅₀ ca. 79 mg/kg). Similarly, the CF₃-substituted saturated xanthene 69 was less potent than the parent tertiary amine 65; it produced no response in the mouse rage test at 25 mg/kg and only 57% response at 50 mg/kg in the rat ptosis test.

The 10,10-dimethyldihydroanthracene 74 is a side-chainreduced analog of the antidepressant melitracene.³⁰ It produced slight imipramine-like activity in the test for prevention of reserpine-induced ptosis in rats,²¹ 44.5 mg/kg gave a 50% response. A derivative (75) of dibenzocycloheptane, a ring system associated with imipramine-like activity, did not produce overt effects in rats at 89 mg/kg and it was inactive in the mouse rage test at 44.5 mg/kg. As in the case of the thioxanthenes 55 and 61, the relative inactivity of 75 may be associated with Me substitution of the bridgehead C.

Diphenylmethanes III (Table II, 44-52) and IV (Table III, 70-73) generally were devoid of significant activity in the pharmacological tests in which most neuroleptic agents are effective.

Aminoalkyl derivatives (V) of diphenylcarbinol, xanthen-9-ol, and thioxanthen-9-ol (Table I) are structurally related to the potent antiemetic diphenidol (VI). For this reason most of these compounds were studied for antiemetic activity in the dog antiapomorphine test.²² In this test both di-

[†]The pharmacologically active isomers were originally assigned the trans configuration (ref 9); however, X-ray crystallographic analysis has subsequently established that chlorprothixene is the cis isomer.²⁸

Chlorpromazine Analogs

phenidol and chlorpromazine are effective. Substitution of one of the phenyl groups of diphenidol had a variable influence on apomorphine-blocking activity. Introduction of a p-Cl (14) or p-CF₃ (19) substituent increased potency somewhat; however, a m-Cl derivative (13) was only about 0.5 as potent as the parent and both meta (18) and ortho (17) CF₃ congeners were still less effective. A branchedchain analog 9 was significantly less potent than Vl in the dog antiapomorphine test. Replacement of the piperidyl substituent of Vl with an N-methylpiperazino group also resulted in a marked decrease in potency; 7 had significantly weaker antiemetic activity than the parent. Several benzenering-substituted derivatives (11, 12, 16) of 7 likewise were only weakly effective in this test. The xanthen-9-ol 4 was also less active than Vl.

Like diphenidol,²² most of the carbinols (Table 1) had only limited activity in other tests in which most neuroleptic agents are effective. The thioxanthenol 1 and the xanthenol 6 were only weakly effective in the mouse rage test, and 5 was inactive at 25 mg/kg. Diphenylcarbinols 11, 12, 15, and 16 (300 mg/kg of dimaleate salts) produced no observable response and 19 (230 mg/kg) produced only slightly decreased motor activity, ptosis, and low body posture in rats.

Experimental Section[‡]

Pharmacology. Materials and Methods. Compds studied are listed in Tables 1, 11, and 111. Unless otherwise indicated, compds were administered orally in the form (salt or base) indicated in Tables 1-111. All doses of compds are expressed as the base, unless otherwise indicated. Adult male albino rats of the Sprague-Dawley and Wistar strains and male albino mice from Carworth Farms (CF_1) were employed in the expts. Adult mongrel dogs of both sexes were used in the antiapomorphine test.

In all tests, observations and values are reported at the time of peak drug effect. The log-probit method³¹ was used for analysis of quantal dose-response data. Analysis of quantitative dose-response data and calons of fiducial limits (Feiller's limits) were performed by the method of Finney.³²

Dose Range. Various doses of the compd were administered orally to rats or mice and overt effects were recorded over an extended period of time until the animals appeared normal. Animals were observed for at least 6 hr on the day of treatment and at least once daily for 7-10 days after compd administration. In this test moderate doses of neuroleptic agents, such as chlorpromazine produce decreased motor activity, decreased curiosity, ptosis, low body posture, hypotonia, and a characteristic hind limb spread. At higher doses, catalepsy (*i.e.*, the animal maintains the set position in which feet are placed on 4 appropriately spaced No. 7 rubber stoppers for 30 sec) and loss of myotactic reflex were observed. Compds in Tables IV and V were examined for their ability to produce these symptoms.

Conditioned avoidance response test^{33,34} and statistical analysis of the data were performed as described previously.³⁵ The ED₅₀ in the conditioned response test is the dose which prevents 50% of the rats from responding to a conditioned stimulus (buzzer) by jumping onto a pole.

Ptosis production³⁶ was studied using preselected nonptotic rats. The ED₅₀ in this test is the dose of compd causing 50% of the rats to exhibit ptosis of both eyes at any time following administration.

In this test, ptosis is defined as 15 sec or more of uninterrupted closure (70% or greater) of the palpebral fissure during a 90-sec observation period.

Rage Test.³⁷ Compds were examined for their ability to suppress foot-shock-induced fighting episodes in pairs of mice as described previously.³⁷ The ED₅₀ in the rage test is the dose of compd

which suppresses fighting episodes in 50% of fighting pairs.

Depression of Spontaneous Motor Activity. Spontaneous motor activity of mice was measured by a modification³⁸ of the photoelectric cell counter method of Winter and Flataker.³⁹ The depressant dose 50 (DD_{50}) is that which reduces the average counts of the treated mice to half that of control animals tested concomitantly.

Antiapomorphine Test. Antiemetic activity was assessed from the ability of compds to diminish frequency of apomorphine-induced emesis in dogs by a modification²² of the method of Chen and Ensor.⁴⁰ The ED_{50} is defined as the dose of compd which reduces the frequency of emesis of treated dogs to a value 50% below that of controls tested at the same time.

Prevention of reserpine induced ptosis was measured in rats as described previously.²¹ The ED_{so} is the dose of compd which prevents significant ptosis (*i.e.*, 70% or greater closure of the palpebral fissure lasting for 15 or more sec) in rats treated with 1 mg/kg (iv) of reserpine.

Chemistry. General Procedures. A. Prepn of Diphenvlcarbinol Derivs. Several drops of EtBr were added to a stirred suspension of 2.43 g (0.1 g-atom) of Mg turnings in 5 ml of THF. After reaction was initiated 0.1 mole of the appropriate chloroalkylamine [3-chloro-N,N.dimethylpropylamine,²³ 3-chloro-N,N,2-trimethylpropyl-amine,⁴¹ 1-(3-chloropropyl)-4-methylpiperazine,⁴² 1-(3-chloro-propyl)pyrrolidine,⁴³ 1-(3-chloropropyl)piperidine,²³ 1-(3-chloro-2methylpropyl)piperidine,44 or 1-(2-benzyloxyethyl)-4-(3-chloropropyl)piperazine^{45,46}] in 50 ml of THF was added at a rate to maintain reflux. After addn was completed the mixt was stirred and refluxed for 2 hr, then a soln of 0.065 mole of ketone (2-chloroxan-thone,⁴⁶ 2-trifluoromethylxanthone,^{47,48} 2-trifluoromethylthioxanthone, 47,48 10,10-dimethyl-9-anthrone, 3- or 4-chlorobenzophenone or 2-,49 3-,49 or 4-trifluoromethylbenzophenone19) in 75 ml of THF was added during 1 hr. The mixt was refluxed an addnl hr, then about two-thirds of the solvent was removed in vacuo. The mixt was poured into an aqueous soln of 16.4 g (0.3 mole) of NH₄Cl. Cryst products were filtered. Noncryst compds were extd (Et₂O) and the exts were dried, concd, and converted to salts as indicated in Table 1.

B. HCl Dehydration of Diphenylcarbinol Derivs. The prepn of 29 is an example of this procedure. A mixt of 21.1 g (0.05 mole) of 2 and 150 ml of 12 N HCl was stirred and refluxed for 3 hr. The soln was concd *in vacuo*, the residue was dissolved in H_2O , and the aqueous soln was made alk (NaOH). The mixt was extd with Et_2O . The exts were dried and concd, and the residual amine was converted into a dihydrochloride (29), Table II.

C. Ac₂O Dehydration of Diphenylcarbinol Derivs. A soln of 0.1 mole of the appropriate aminoalkyldiphenylcarbinol and 200 ml of Ac₂O was refluxed for 2 hr, and then concd *in vacuo*. The residue was suspended in H₂O, the mixt was made strongly alk (NaOH) and was extd (Et₂O). The ether soln was dried and concd. Residual olefinic amines were distd and/or converted to salts, Table II.

D. Addn of Amines to 9-(2-Propenylidene)-2-trifluoromethylthioxanthene (VIII). A soln of 8.0 g (0.026 mole) of VIII[§] and 50 ml of amine [piperidine, pyrrolidine, 1-methylpiperazine, or 1-(2-hydroxyethyl)piperazine] was heated at 100° for 20 hr. It was concd and the residue was suspended in 1 N H₃PO₄. After the mixt was extd with Et₂O the acidic soln was made alk (KOH) and the pptd material was extd (Et₂O). The ext was dried and concd to give mixts of isomeric amines. Hydrochlorides (29, 30, 32, and 33) were prepd and recrystd from solvents indicated in Table II to give single isomers (A). The filtrate from isolation of 30 was concd, the residue was suspended in 2 N NaOH, and the mixt was extd (Et₂O). After it was dried, the Et₂O soln was concd and the residual amine was converted to a cyclohexylsulfamate (31). A second isomer was not isolated from prepn of 29, 32, and 33.

E. Catalytic Hydrogenation of Olefins. This method is exemplified by the hydrogenation and hydrogenolysis of 43. A mixt of 14.5 g (0.025 mole) of 43, 4 g of 10% Pd/C, and 150 ml of EtOH was hydrogenated at 25° at an initial H₂ pressure of 3.5 kg/cm². After H₂ uptake was completed (12 hr) the mixt was filtered, the filtrate was concd and the residue was dissolved in H₂O. The aqueous soln was made alk (NaOH) and the mixt was extd (Et₂O). The exts were dried and residual 4-[3-(2-trifluoromethyl-9-xanthenyl)-propyl]-1-piperazineethanol was converted to a dihydrochloride (68).

F. P-HI Reduction of Olefins. Prepn of 58 illustrates this procedure. A mixt of 15.0 g (0.043 mole) of N,N-dimethyl-2-trifluoro-

 $[\]pm$ Mp and bp are not corrected. Microanalyses were performed by Miss Margaret Carroll and coworkers of the Analytical and Physical Chemistry Section, Smith Kline and French Laboratories. Where analyses are reported by the symbols of the elements, anal results were within ±0.4% of the calcd values. Nmr spectra were obtained on a Varian A.60 Spectrometer (Me₄Si).

[§] In several expts, N,N·dimethyl·2·trifluoromethylthioxanthen- $\Delta^{9,\gamma}$ -propylamine methiodide was employed instead of VIII. 1·Methylpiperazine and piperidine gave approx equal yields of the resp piperazine or piperidine from either starting material.

methylthioxanthen- Δ^{9} , γ -propylamine, # 43 ml of 57% HI, 43 ml of AcOH, and 10.3 g (0.33 g-atom) of red P was stirred and refluxed for 2 hr. The mixt was filtered, the filtrate was dild with ice H₂O, made alk with NaOH, and extd (Et₂O). The exts were dried and concd. The residual liquid was distd and then it was converted into a maleate (58).

G. Alkylation of Diphenylmethane Derivs in PhMe. Prepn of 59 is an example of this procedure. A mixt of 2-trifluoromethylthioxanthene (13.4 g, 0.05 mole), 2.9 g (0.075 mole) of NaNH₂, and 200 ml of PhMe was stirred and refluxed for 2 hr. After the mixt was cooled to 25° , 17.6 g (0.1 mole) of 1-(3-chloropropyl)-4methylpiperazine⁴² in 50 ml of PhMe was added slowly. The mixt was stirred and refluxed for 20 hr, then 100 ml of H₂O was added slowly. The PhMe soln was sepd and extd with 1 N HCl. Acid exts were made alk with NaOH and the mixt was extd (Et₂O). The Et₂O soln was dried, concd, and converted into a dihydrochloride (59).

H. Alkylation of Diphenylmethane Derivs in DMSO. To a stirred suspension of 0.1 mole of a 52% dispersion of NaH in mineral oil in 50 ml of DMSO at 25° was added slowly a soln of the diphenyl-methane deriv in 50 ml of DMSO, and the mixt was heated at 60-70° until H₂ evolution was completed. The mixt was cooled to 25° and a soln of 0.13 mole of 3-chloro-N,N-dimethylpropylamine²³ in 25 ml of DMSO was added slowly, then it was heated gradually to 100°. After 2 hr at 100° the stirred mixt was dild with H₂O and extd (Et₂O). The exts were extd with 1 N HCl. Acid exts were made alk with 2 N NaOH, the mixt was extd with Et₂O, and the Et₂O exts were dried and concd. Residual amines were distd and converted into the indicated salts (Table III).

1. Monodemethylation of Dimethylaminoalkyl Derivs. A mixt of 0.025 mole of the appropriate dimethylaminoalkyl deriv (bases from 25, 26, 58, 65, or *N*,*N*-dimethylthioxanthene- $\Delta^{9,\gamma}$ -propylamine¹⁴) and 2.9 g (0.028 mole) of BrCN in 75 ml of C₆H₆ was stirred at 50° for 6 hr. The C₆H₆ soln was extd with 1 *N* HCl, dried, and evapd to give crude cyanamide derivs.

To cyanamide derivs from 25 and 26 in 100 ml of Et_2O was added 33 ml of 3 *M* MeMgBr in Et_2O . The mixt was stirred and refluxed for 20 hr, then it was slowly poured into ice H_2O and excess NaOH. The Et_2O layer was sepd and the aqueous mixt was extd with Et_2O . The combined Et_2O solns were extd with 1 *N* HCl, the acid exts were made alk (NaOH), and the mixt was extd with Et_2O . After the Et_2O exts were dried, they were distd to give pale yellow liquids, bp 153-156° (0.15 mm), which were converted to hydrochlorides, 27 and 28.

For prepn of 23 and 69, crude cyanamides from 65 and N,Ndimethylthioxanthen- $\Delta^{9,\gamma}$ -propylamine¹¹ (0.025 mole) were refluxed with 0.15 mole of NaOH in EtOH-H₂O for 24 hr and were isolated in the usual way.

For prepn of 60, crude cyanamide (0.3 mole) from 58 was stirred and refluxed for 17 hr with a soln of 300 ml of AcOH, 200 ml of H_2O , and 30 ml of 12 N HCl. The reaction mixt was concd, made alk, and processed in the usual manner.

Separation of Isomeric 3-Aminopropylidene Derivs. A. N,N-Dimethyl-2-trifluoromethylthioxanthene- Δ^{9} , γ -propylamine Hydrochlorides⁹ (25 and 26). A mixt of isomers was obtained in 71% yield from 1 by procedure C, bp 155-160° (0.25 mm). The ole-finic mixt (24.9 g, 0.071 mole) was dissolved in 120 ml of EtOH and a soln of 34.8 g (0.142 mole) of styphnic acid in 185 ml of EtOH was added slowly. The mixt was heated to reflux and the resulting soln was allowed to cool to 25° to give 17.6 g (44%) of a bright yellow styphnate, mp 201-202°, after washing thoroughly with EtOH. Anal. (C₂₉H₂₁F₅N₄O₈S) C, H, N.

Free amine was liberated by passing a soln of the styphnate in Me₂CO through a column of basic alumina. The Me₂CO eluates were concd and converted to a hydrochloride of isomer B (26).

The combined filtrates and washings from prepn of the above styphnate were concd to 60 ml and cooled to 0° to give 25.6 g (45%) of orange cryst distyphnate, mp 143-145°. Anal. $(C_{31}H_{24}F_{3}N_{7}O_{16}S)$ H, N; C, calcd 44.34; found 44.83.

An Me_2CO soln of the distyphnate was passed through a column of basic alumina, and the Me_2CO eluates were concd to give isomer A which was converted to a hydrochloride (25).

B. 2-Trifluoromethyl-N, N, β -trimethylxanthene- $\Delta^{\circ, \gamma}$ -propylamine Hydrochlorides (40 and 41). A mixt of isomeric olefins was obtained from 3 in 85% yield by procedure C, bp 140–143° (0.3 mm). It was crystd from a min vol of petr ether (bp 30–60°) to give 12.0 g of cryst solid, mp 77–80°, which was recrystd from EtOH-H₂O to give 7.5 g, 82.5–83°. Anal. (C₂₀H₂₀F₃NO) C, H.

#Either isomer, 25 or 26, as well as mixts of the isomers gave comparable results.

This base (isomer A) was converted to a hydrochloride (40). It was also converted to a picrate, mp 157.5-158.5° after recrystn (EtOH). Anal. ($C_{26}H_{29}F_{3}N_{4}O_{8}$) C; H, calcd 4.02; found 4.51.

The mother liquors from isolation of isomer A were concd and the residual liquid was treated with excess picric acid in EtOH to give 11.0 g of a picrate, mp 198-199°. Anal. $(C_{26}H_{23}F_3N_4O_8)$ C, H.

A soln of this picrate in Me_2CO was passed through an alumina column and the eluates were concd to give isomer B which was converted to a hydrochloride (41).

C. N,N-Dimethyl-2-trifluoromethylxanthene- $\Delta^{9,\gamma}$ -propylamine Hydrochlorides (38 and 39). A mixt of isomeric olefins was obtained in 82% yield from 4 by procedure C, bp 144-146° (0.12 mm). The mixt (6.5 g, 0.02 mole) was treated with 1 equiv of picric acid in EtOH to give 4.4 g of a picrate, mp 194-195° from Me₂CO-Et₂O. Anal. (C₂₅H₂₁F₃N₄O₈) C, H.

An Me_2CO soln of this picrate was passed through a column of basic alumina and the eluates were concd. The resulting isomer B was converted to a hydrochloride (39).

Filtrates from prepn and recrystn of the above picrate were passed through a column of basic alumina and eluted with Me₂CO. The eluates were concd. To the residual liquid was added 1 equiv of styphnic acid in EtOH to give 4.5 g of a styphnate, mp 176-176.5° after several recrystns from Me₂CO-EtOH. Anal. ($C_{25}H_{21}F_3N_4O_9$) C, H.

The base (isomer A) isolated from this styphnate in the usual way was converted to a hydrochloride (38).

D. 2-Chloro-N,N-dimethylxanthene- $\Delta^{9,\gamma}$ -propylamine Maleates (35 and 36). A mixt of isomeric olefins, bp 175-183° (0.45 mm), was obtained in 69.5% yield from 2-chloro-9-(3-dimethylaminopropyl)xanthen-9-ol¹⁴ by procedure C. To the mixt (11.4 g, 0.038 mole) in 225 ml of EtOH was added 5.2 g (0.041 mole) of oxalic acid 2H₂O in 100 ml of EtOH. The cryst salt (10.5 g) was filtered and then it was stirred with 275 ml of boiling EtOH. The hot mixt was filtered to give 5.5 g of cryst oxalate, mp 215-217°. The oxalate was converted to base which was treated with an equiv of maleic acid in EtOH-Et₂O to give a cryst maleate which was recrystd twice from *i*-PrOH to afford 4.3 g of isomer A (35).

All EtOH solns from prepn and purification of the above oxalate were combined and concd, and the base was isolated. The base was converted to 4.5 g of an HCl salt, mp $189-191^{\circ}$,** after 3 recrystns from *i*·PrOH-Et₂O. Base, liberated from this HCl salt, was converted to a maleate which was recrystd 3 times from *i*·PrOH to give 3.5 g of isomer B (36).

E. Attempted Separation of cis. and trans-1-Methyl-4-[3-(2-tri-fluoromethylxanthen-9-ylidene)propyl]piperazine Dihydrochlorides (42). Dehydration of 5 according to procedure C gave 86% of a mixt of isomers, bp 172-175° (0.2 mm). Crystn of the mixt (25 g) from petr ether (bp 30-60°), followed by several recrystns from aqueous MeCN gave 7.5 g of isomer A, mp 83.5-85°. Anal. ($C_{22}H_{23}F_3N_2O$) C, H.

Isomer A was converted to a dihydrochloride (42). Filtrates from isolation of isomer A were concd to leave a residual liquid having an ir spectrum different from that of isomer A; however, this material gave a dihydrochloride (MeCN-EtOH), mp 231° dec. having an ir spectrum identical with that of 42.

2-Chloroxanthene. A mixt of 38 g (0.165 mole) of 2-chloroxanthone⁴⁶ and 25 g of H_2NNH_2 H_2O was heated in a sealed system at 200° for 20 hr. The mixt was extd with EtOH; the exts were concd. The residue was distd, bp 130-135° (0.3 mm), and the distillate was recrystd twice from EtOH to give 13.5 g (38%) of colorless crystals, mp 114.5-115°. *Anal.* (C₁₃H₉ClO) C, H.

2-Trifluoromethylthioxanthene. A mixt of 50 g (0.18 mole) of 2-trifluoromethyl-9-thioxanthone, 47,48 320 ml of 85% H₂NNH₂·H₂O, and 200 ml of EtOH was heated at 235° with shaking for 8 hr in a high-pressure vessel. The soln was concd *in vacuo*, the residue was suspended in H₂O, and the mixt was extd (Et₂O). The exts were dried and concd to give 33 g (70%) of yellow crystals, mp 94-95° (MeOH). Anal. (C₁₄H₂F₃S) C, H.

2. Methylthiothioxanthene was prepd from 2-methylthio-9thioxanthone⁵⁰ in the same manner as described for 2-trifluoromethylthioxanthene. Pale yellow crystals, mp 103.5-104.5°, from hexane, were obtained in 88% yield. Anal. $(C_{14}H_{12}S_2)$ C, H.

9-Methyl-2-trifluoromethylthioxanthen-9-ol. To 16.9 g of a 5.21% soln of MeLi (0.04 mole) in Et₂O under N₂ was added, in portions, 10 g (0.036 mole) of 2-trifluoromethyl-9-thioxanthone.^{47,48} The mixt was stirred and refluxed for 2.5 hr, then it was poured

^{**}This HCl salt is probably the same isomer described previously, mp 193-195°,¹⁴ as we were unable to obtain a cryst HCl salt from isomer A.

slowly into 100 ml of 2 N HCl. The mixt was extd (Et₂O) and the exts were dried and concd to give 10.5 g (98%) of colorless crystals, mp 90–93°, from hexane. Anal. ($C_{15}H_{11}F_{3}OS$) C, H.

9-Methyl-2-trifluoromethylthioxanthene. A mixt of 10 g (0.034 mole) of 9-methyl-2-trifluoromethylthioxanthen-9-ol, 10.6 g (0.34 g-atom) of red P, 35 ml of AcOH, and 35 ml of 57% Hl was stirred and refluxed for 2 hr. The mixt was dild with H₂O and filtered. The filtrate and filter cake were extd (Et₂O). The exts were dried and distd to give 8.0 g of pale yellow liquid, bp 115-120° (0.3 mm), nmr peak (CDCl₃) at δ 1.48 (3 H, d, J = 7 Jz), at 4.06 (1 H, q, J = 7 Hz), and at *ca.* 7.3 (7 H, m). Anal. (C₁₅H₁₁F₃S) C, H. 9-Methylthioxanthene^{51,52} and 10,11-dihydro-5-methyl-5H-di-

9-Methylthioxanthene^{51,52} and 10,11-dihydro-5-methyl-5H-dibenzo[a,d] cycloheptene^{53,54} were obtained from 9-thioxanthone and 10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5-one in the same manner as described for synthesis of 9-methyl-2-trifluoromethylthioxanthene.

9-(2-Propenylidene)-2-trifluoromethylthioxanthene (VIII). To a soln of 35 g (0.1 mole) of base liberated from 25^{++} in Me₂CO was added excess Mel to give 47 g of colorless cryst methiodide, mp 216-217°. The methiodide was suspended in 400 ml of MeOH, an excess of OH form anion-exchange resin^{‡‡} was added, and the mixt was stirred for 30 min. The mixt was filtered, the filtrate was concd, and the residue was heated at 100° at 25 mm until gas evolution was completed. An Et₂O soln of the residue was dried and concd. Recrystn of the resulting solid from hexane gave 23.0 g (76%) of pale yellow crystals, mp 86-88°. Anal. (C₁₇H₁₁F₃S) C, H.

1-(2-Acetoxyethyl)-4-[3-(2-trifluoromethyl-9-xanthenyl)propyl]piperazine Dimaleate (67). A soln of 9.2 g (0.02 mole) of base liberated from 68, 3.4 g (0.04 mole) of AcCl and 100 ml of C_6H_6 was stirred and refluxed for 30 min and then concd *in vacuo*. Residual solid was dissolved in H₂O and the soln was made alk with NH₄OH. After extg the mixt with Et₂O, the exts were dried and concd and the remaining liquid was converted to a dimaleate (67).

N,*N*-Dimethyl-2-trifluoromethylthioxanthene- $\Delta^{9,\gamma}$ -propylamine 5-Oxide Hydrochloride (76). To a soln of 3.0 g (0.0086 mole) of 26 in 20 ml of MeOH was added 1.73 g (0.01 mole) of 3-chloroperbenzoic acid. The soln was allowed to stand for 20 hr and then it was dild with Et₂O to give 3.0 g (96%) of colorless crystals, mp 192-194°, after recrystn from EtOH-Et₂O. *Anal.* (C₁₉H₁₉ClF₃NOS) C, H.

N-[3-(2-Trifluoromethyl-9-thioxanthenyl)propyl]-N-methylsuccinamic Acid (77). A mixt of 10.1 g (0.03 mole) of base liberated from 60, 3.6 g (0.036 mole) of succinic anhydride, and 40 ml of PhMe was refluxed for 3 hr. The soln was concd *in vacuo* and the residue was crystd from EtOH-H₂O to give 12.0 g (92%) of colorless crystals, mp 106-108°. Anal. ($C_{22}H_{22}F_3NO_3S$) C, H, N.

Acknowledgments. The authors acknowledge with appreciation the assistance of John E. Casey, Bruce M. Lester, and Michael P. Olmsted, of Smith Kline and French Laboratories and Dr. Edward J. Nikawitz of the Givaudan Corporation, Delawanna, N. J.

References

- T. Charpentier, U. S. Patent 2,519,886 (1950); U. S. Patent 2,530,451 (1950).
- (2) S. Courvoisier, J. Fournel, R. Ducrot, M. Kolsky, and P. Koetchet, Arch. Int. Pharmacodyn., 92, 305 (1952).
- (3) J. Delay, T. Deniker, and J. M. Harl, Ann. Med. Psychol. Fr., 110, 112 (1952).
- (4) H. E. Lehmann and G. E. Hanrahan, AMA Arch. Neurol. Psychiat., 71, 227 (1954).
- (5) I. Møller Nielsen and K. Neuhold, Acta Pharmacol. Toxicol., 15, 335 (1959).
- (6) J. F. Muren and B. M. Bloom, J. Med. Chem., 13, 14, 17 (1970).
- (7) D. M. Gallant, M. P. Bishop, E. Timmons, and A. R. Gould, Curr. Ther. Res. Clin. Exp., 8, 153 (1966).
- (8) P. V. Petersen, N. Lassen, T. Holm, R. Kopf, and I. Møller Nielsen, Arzneim. Forsch., 8, 395 (1958).
- (9) 1. Møller Nielsen, W. Hougs, N. Lassen, T. Holm, and P. V. Petersen, Acta Pharmacol. Toxicol., 19, 87 (1962).

- (10) D. M. Gallant, M. P. Bishop, E. Timmons, and A. R. Gould, *Curr. Ther. Res. Clin. Exp.*, 8, 153 (1966).
- (11) K. Pelz and M. Protiva, Collect. Czech. Chem. Commun., 32, 2161 (1967).
- (12) (a) P. A. J. Janssen, C. J. E. Niemegeers, and K. H. L. Schellekens, *Arzneim.-Forsch.*, 15, 104, 1196 (1965); 16, 339 (1966);
 (b) P. A. J. Janssen, C. J. E. Niemegeers, K. H. L. Schellekens, and F. M. Lenaerts, *ibid.*, 17, 841 (1967).
- (13) D. H. Tedeschi, "The Present Status of Psychotropic Drugs," A. Cerletti and F. J. Bove, Ed., Excerpta Medica Foundation, Amsterdam, 1969, p 145.
- (14) G. E. Bonvicino, H. G. Arlt, Jr., K. M. Pearson, and R. A. Hardy, Jr., J. Org. Chem., 26, 2383 (1961).
- (15) A. A. Goldberg and A. H. Wragg, J. Chem. Soc., 453 (1960).
 (16) S. O. Winthrop, M. A. Davis, G. S. Myers, J. G. Gavin, R.
- Thomas, and R. Barber, J. Org. Chem., 27, 230 (1962). (17) F. J. Villani, C. A. Ellis, C. Teichman, and C. Bigos, J. Med.
- Pharm. Chem., 5, 373 (1962).
- (18) V. Hnevsova-Seidlova and M. Protiva, ibid., 4, 411 (1961).
- (19) C. van der Stelt, H. M. Tersteege, and W. Th. Nauta, Arzneim.-Forsch., 14, 1324 (1964).
- (20) V. Seidlova, J. Metysova, F. Hradil, Z. Votava, and M. Protiva, *Cesk. Farm.*, 14, 75 (1965).
- (21) C. Kaiser, D. H. Tedeschi, P. J. Fowler, A. M. Pavloff, B. M. Lester, and C. L. Zirkle, J. Med. Chem., 14, 179 (1971) (paper 3).
- (22) C. A. Leonard, T. Fujita, D. H. Tedeschi, C. L. Zirkle, and E. J. Fellows, J. Pharmacol. Exp. Ther., 154, 339 (1966).
- (23) A. Marxer, Helv. Chim. Acta, 24, 209E (1941).
- (24) Kefalas A/S, Danish Patent 88,606 (1960); Chem. Abstr., 55, 5536 (1961); British Patent, 932,494 (1963); Chem. Abstr., 61, 9477 (1964).
- (25) T. Holm, Acta Chem. Scand., 18, 2437 (1963).
- (26) P. V. Petersen, N. O. Lassen, and T. O. Holm, U. S. Patent 3,149,103 (1964).
- (27) H. A. Hageman, Org. React., 7, 198 (1953).
- (28) J. D. Dunitz, H. Eser, and P. Strickler, Helv. Chim. Acta, 47, 1897 (1964).
- (29) R. B. Miller, D. H. Tedeschi, and E. J. Fellows, *Pharmacologist*, 7, 171 (1965).
- (30) H. Bratlund, Acta Psychiat. Scand., 37, 295 (1961).
- (31) J. T. Litchfield, Jr. and F. Wilcoxon, J. Pharmacol. Exp. Ther., 96, 99 (1949).
- (32) D. J. Finney, "Statistical Methods in Biological Assay," Hafner Publishing Co., New York, N. Y., 1952.
- (33) L. Cook and E. Weidley, Ann. N. Y. Acad. Sci., 66, 740 (1957).
- (34) L. Cook, E. F. Weidley, R. W. Morris, and P. A. Mattis, J. Pharmacol. Exp. Ther., 113, 11 (1955).
- (35) D. H. Tedeschi, R. E. Tedeschi, L. Cook, P. A. Mattis, and E. J. Fellows, Arch. Int. Pharmacodyn., 122, 129 (1959).
- (36) T. Fujita and D. H. Tedeschi, *Pharmacologist*, 7, 155 (1965).
- (37) R. E. Tedeschi, D. H. Tedeschi, A. Mucha, L. Cook, P. A. Mattis, and E. J. Fellows, J. Pharmacol. Exp. Ther., 125, 28 (1959).
- (38) D. H. Tedeschi, J. P. Benigni, C. J. Elder, J. C. Yeager, and J. V. Flanigan, *ibid.*, **123**, 35 (1958).
- (39) C. A. Winter and L. Flataker, ibid., 103, 93 (1951).
- (40) G. Chen and C. R. Ensor, ibid., 98, 245 (1950).
- (41) J. P. Bourquin, G. Schwarb, G. Gamboni, R. Fischer, L. Ruesch, S. Guldimann, V. Theus, E. Schenker, and J. Renz, *Helv. Chim. Acta*, 41, 1072 (1958).
- (42) O. Hromatka, I. Grass, and F. Sauter, Monatsh. Chem., 87, 701 (1956).
- (43) F. Leonard and L. Simet, J. Amer. Chem. Soc., 77, 2855 (1955).
- (44) E. Profft and H. Oberender, J. Prakt. Chem., 25, 255 (1964).
- (45) A. Buzas and G. Regnier, Bull. Soc. Chim. Fr., 1589 (1960).
- (46) S. N. Dhar, J. Chem. Soc., 117, 1053 (1920).
- (47) P. N. Craig and C. L. Zirkle (to Smith Kline and French Labs.), U. S. Patent 3,192,204 (1965).
- (48) P. N. Craig and C. L. Zirkle (to Smith Kline and French Labs.), U. S. Patent 3,282,930 (1966).
- (49) C. van der Stelt, A. B. H. Funcke, and W. Th. Nauta, Arzneim. Forsch., 14, 964 (1964).
- (50) J. Renz, J. P. Bourquin, R. Griot, L. Reusch, and G. Schwarb, U. S. Patent 3,055,903 (1962); *Chem. Abstr.*, 58, 4527 (1963).
- (51) H. Decker, Ber., 38, 2493 (1905).
- (52) C. C. Price, M. Hori, T. Parasaran, and M. Polk, J. Amer. Chem. Soc., 85, 2278 (1963).
- (53) A. C. Cope and S. W. Fenton, ibid., 73, 1668 (1951).
- (54) N. J. Leonard, A. J. Kresge, and M. Oki, ibid., 77, 5078 (1955).
- (55) Kefalas A/S, British Patent 939,856; Chem. Abstr., 60, 2874 (1964).

^{††}Isomer B (26) was converted to a diene by the same synthesis; however, the isomer composition of the product was not detd.

^{‡‡}A strongly basic polystyrene alkyl quaternary amine (OH form) of medium porosity was employed. Research grade Rexyn 201 (OH) was purchased from the Fisher Scientific Co.